miércoles, 2 de julio de 2008

Sistema numérico

Un sistema de numeración es un conjunto de símbolos y reglas de generación que permiten construir todos los números válidos en el sistema.
Un sistema de numeración puede representarse como
donde:
N es el sistema de numeración considerado (p.ej. decimal, binario, etc.)
S son los símbolos permitidos en el sistema. En el caso del sistema decimal son {0,1...9}; en el binario son {0,1}; en el octal son {0,1...7}; en el hexadecimal son {0,1...9,A,B,C,D,E,F}
R son las reglas que nos indican qué números son válidos en el sistema, y cuáles no.

Sistema de Numeración Octal
El sistema de numeración octal es también muy usado en la computación por tener una base que es potencia exacta de 2 o de la numeración binaria. Esta característica hace que la conversión a binario o viceversa sea bastante simple. El sistema octal usa 8 dígitos (0, 1, 2, 3, 4, 5, 6, 7) y tienen el mismo valor que en el sistema de numeración decimal. Como el sistema de numeración octal usa la notación posicional entonces para el número 3452.32q tenemos: 2*80 + 5*81 + 4*82 + 3*83 + 3*8-1 + 2*8-2 = 2 + 40 + 4*64 + 64 + 3*512 + 3*0.125 + 2*0.015625 = 2 + 40 + 256 + 1536 + 0.375 + 0.03125 = 1834 + 40625d
Entonces, 3452.32q = 1834.40625d
Es utilizado como una forma abreviada de representar números binarios que emplean caracteres de seis bits. Cada tres bits (medio caracter) es convertido en un único dígito octal. Okta es un término griego que significa 8.


Sistema de Numeración Hexadecimal
El sistema de numeración hexadecimal, o sea de base 16, (es común abreviar hexadecimal como hex aunque hex significa base seis y no base dieciseis) es compacto y proporciona un mecanismo sencillo de conversión hacia el formato binario. Debido a esto, la mayoría del equipo de cómputo actual utiliza el sistema numérico hexadecimal. Como la base del sistema hexadecimal es 16, cada dígito a la izquierda del punto hexadecimal representa tantas veces un valor sucesivo potencia de 16, por ejemplo, el número 1234 es igual a:
1*16^3 + 2*16^2 + 3*16^1 + 4*16^0
Lo que da como resultado: 4096 + 512 + 48 + 4 = 4660
Dado que el sistema usual de numeración es de base decimal y, por ello, sólo se dispone de diez dígitos, se adoptó la convención de usar las seis primeras letras del alfabeto latino para suplir los dígitos que nos faltan: A = 10, B = 11, C = 12, D = 13, E = 14 y F = 15. Como en cualquier sistema de numeración posicional, el valor numérico de cada dígito es alterado dependiendo de su posición en la cadena de dígitos, quedando multiplicado por una cierta potencia de la base del sistema, que en este caso es 16. Por ejemplo: 3E0,A16 = 3×16^2 + E×16^1 + 0×16^0 + A×16^-1 = 3×256 + 14×16 + 0×1 + 10×0,0625 = 992,625. El sistema hexadecimal actual fue introducido en el ámbito de la computación por primera vez por IBM en 1963. Una representación anterior, con 0–9 y u–z, fue usada en 1956 por la computadora Bendix G-15 y algunas computadoras modernas.

No hay comentarios: